Stephen Hawking believes he’s solved a huge mystery about black holes

hawk 1
Stephen Hawking’s new black hole theory

What happens to information about objects that fall into black holes has vexed scientists for decades but the famed physicist believes he has the answer.

On Tuesday, famed physicist Stephen Hawking presented new theories on black holes to a crowd of esteemed scientists and members of the media at KTH Royal Institute of Technology in Stockholm.

Hawking focused on something called the information paradox, which continues to puzzle scientists who study black holes. In a nutshell, the parradox involves the fact that information about the star that formed a black hole seems to be lost inside it, presumably disappearing when the black hole inevitably disappears. These things cannot be lost, according to the way we think the universe works, and physicists generally believe that they aren’t really lost. But where does the information go when the black hole that’s absorbed it goes kaput?
hawk 2 No_black_hole_hawking_quikrpost
Where does information about a star that formed a black hole go to? Theoretical physicist Stephen Hawking says it goes to the event horizon on the boundary of a black hole.
Where does information about a star that formed a black hole go to? Theoretical physicist Stephen Hawking says it goes to the event horizon on the boundary of a black hole. Photo: Getty Images

It’s brainy stuff, but without an explanation for the apparent paradox, some of the most basic laws we think exist in the universe are at stake. At a public lecture in Stockholm on Monday, Hawking implied that our concept of time itself could fall apart if black holes proved to be exempt from such laws.

On Tuesday, he explained his new theory: “I propose that the information is stored not in the interior of the black hole as one might expect, but in its boundary, the event horizon,” Hawking said. The event horizon is the sort of shell around a black hole, past which all matter will be drawn into the dense object’s powerful embrace.

According to Hawking’s idea, the particles that enter a black hole leave traces of their information on the event horizon. When particles come back out – in a phenomenon called Hawking Radiation – they carry some of that information back out, preserving it. Technically, anyway.

Stephen Hawking outlines the Breakthrough Listen project, which will search for signs of alien life beyond our galaxy, on July 20 in London.
Stephen Hawking outlines the Breakthrough Listen project, which will search for signs of alien life beyond our galaxy, on July 20 in London. Photo: Reuters

“The information is stored in a super translation of the horizon that the ingoing particles [from the source star] cause,” he explained, for those of you who like a little more physics lingo. “The information about ingoing particles is returned, but in a chaotic and useless form. For all practical purposes the info is lost.”
hawk 3
At Monday’s public lecture, he explained this jumbled return of information was like burning an encyclopaedia: You wouldn’t technically lose any information if you kept all of the ashes in one place, but you’d have a hard time looking up the capital of Minnesota.

On the left, an optical image from the Digitized Sky Survey shows Cygnus X-1, outlined in a red box.  Cygnus X-1 is located near large active regions of star formation in the Milky Way, as seen in this image that spans some 700 light years across. An artist's illustration on the right depicts what astronomers think is happening within the Cygnus X-1 system.  Cygnus X-1 is a so-called stellar-mass black hole, a class of black holes that comes from the collapse of a massive star.  New studies with data from Chandra and several other telescopes have determined the black hole's spin, mass, and distance with unprecedented accuracy.

On the left, an optical image from the Digitized Sky Survey shows Cygnus X-1, outlined in a red box. Cygnus X-1 is located near large active regions of star formation in the Milky Way, as seen in this image that spans some 700 light years across. An artist’s illustration on the right depicts what astronomers think is happening within the Cygnus X-1 system. Cygnus X-1 is a so-called stellar-mass black hole, a class of black holes that comes from the collapse of a massive star. New studies with data from Chandra and several other telescopes have determined the black hole’s spin, mass, and distance with unprecedented accuracy.


The translations that occur form a sort of hologram of the original particles, Hawking said – a hologram in the sense that 3-D information is recorded on a 2-D surface. When radiation leaves the black hole, it carries some of that information preserved on the event horizon with it.

Nobel laureate Gerard t’Hooft, who was present for the discussion, has been thinking about information loss in a similar way, and he cited several papers he has published on the subject. It will take more discussion – and much comparing of math equations – to establish what’s new about Hawking’s theories in relation to t’Hooft’s, and whether Hawking has overcome some of the issues associated with earlier iterations of the idea.

It’s worth noting that Hawking – who drew a large crowd of Swedish journalists on the morning of his announcement – is not alone in presenting big new ideas on black holes this week. Hawking’s presentation was part of a week-long conference on black holes organised by University of North Carolina Chapel Hill physicist Laura Mersini-Houghton.
hawk 4
Hawking and his colleagues – some of the greatest minds in theoretical physics – are hoping to answer some of science’s most burning questions about how black holes work.

Share
Clip to Evernote
This entry was posted in Philosophy, Science and Technology, Videos. Bookmark the permalink.